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Abstract-Folds in rock provide opportunities for establishing how fabric and deformation mechanisms vary with 
local variations in strain and strain rate, and strain distribution in folds should, in principle, provide information 
on rheological conditiol~s during folding. To investigate this, we use finite element models to simulate buckling in 
single-layer folds in incompressible, power-law materials in plane strain. Numerical results show that the pattern 
of strain variation in buckle folds is sensitive to variations in the power-law exponent, rz~, of the stiff layer. For a 
given amplitude, wavelength/thickness, and ratio of viscosities, m, of layer to matrix, strain and strain gradient 
along the axial trace increase more rapidly away from the neutral surface (on both sides) for power-law (no > 1) 
materials than for Newtonian (nL = 1) materials. 

Buckling strain is superimposed on early uniform layer-parallel shortening, which becomes greater as initial 
amplitude decreases and as nL and m decrease. The effect of this superposition can best be described by reference 
to the infinitesimal neural surface (INS) and finite neutral surface (FNS), which vary in position with degree of 
overall shortening. The INS and FNS move from the outer arc towards the inner arc during buckling, the latter 
following the former. Thus, at any stage of folding, the layer can be divided into three zones with different 
coaxial, non-linear strain histories. Fabric in natural folds is expected to reflect such unsteady flow conditions. 

INTRODUCTION 

Folding in rocks and other layered materials is accom- 
panied by distortions or strains within the layers. The 
pattern of these strains is characteristic of the folding 
mechanism, and the patterns can be studied directly in 
natural folds and by using both analog models and 
numerical models (Biot et al. 1961, Ramberg 1963a,b, 
Ghosh 1966, 1968, Chapple 1968, Dieterich & Carter 
1969, Hobbs 1971, Hudleston 1973, Shimamoto & Hara 
1976). In isotropic homogeneous materials, the strain 
pattern in stiff folded layers is typically one of layer- 
parallel stretching in the outer arc and layer-parallel 
shortening in the inner arc-a pattern known as 
concentric-longitudinal strain (Ramberg 1961) or 
tangential-longitudinal strain (Ramsay 1967, pp. 397- 
400). A neutral surface, connecting points of no strain, 
exists between the zones of extensional and contrac- 
tional strains (Fig. la). In viscous or plastic materials, 
tangential-longitudinal strain may be superimposed on 
earlier homogeneous strains, in which case the strain 
pattern may be more complex and a neutral surface may 
not exist (Fig. lb) (Hudleston & Hoist 1984, Hudleston 
& Tabor 1988). In multilayered or strongly anisotropic 
rocks, layer-parallel shear may dominate the strain pat- 
tern, in a process known as flexural slip or JlexuralfEow 
(Donath & Parker 1964, Ramsay 1967, pp. 391-396). 

We focus our attention in this paper on the strain 
patterns in buckle folds developed in isolated stiff isotro- 
pic viscous layers. Previous studies of progressive buckle 
fold development in such layers have shown that the 
history of deformation is quite complicated and that fold 
development is accompanied by continuous changes in 
the states of stress and strain throughout the layer and 
the adjacent matrix (e.g. Chapple 1968, Dieterich & 

Carter 1969, Dieterich 1970). One of the principal aims 
of the present paper is to demonstrate how the strain 
pattern in the stiff layer and the evolution of this pattern 
with fold growth are dependent on the rheological 
properties of the layer. The information so obtained 
may be of help in the interpretation of strain patterns in 
naturat folds in terms of the rheologicaf state of the rocks 
during folding. Natural folds in stiff layers isolated from 
their neighbors within a homogeneous softer matrix are 
not common, but we believe they exist in sufficient 
quantity to enable systematic study for this purpose to be 
made. Earlier studies of natural single-layer folds, focus- 
ing on wavelength/thickness characteristics, include 
those of Sherwin & Chapple (1968), Hudleston & Hoist 
(1984) and Holst (1987). 

Fig. I. Schematic strain patterns in the hinge regions of folds. (a) 
Buckling only: layer-parallel stretching in the outer arc and layer- 
parallel shortening in the inner arc, FNS-finite neutral surface. (b) 
Uniform strain preceding buckling: contractional strain everywhere, 

no finite neutral surface. 
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We have shown, in earlier papers on fold shape 
(Hudleston & Lan 1993, 1994) that, given suitable 
circumstances, curvature of single-layer buckle folds, 
can be used to get some idea of the degree of non- 
linearity of the flow law. Clearly, there is some relation- 
ship between the shapes of the bounding surfaces of a 
folded layer and the strain distribution within the layer, 
and so we would expect the two to show sympathetic 
dependencies on rheological parameters. 

In many instances strain cannot be measured in rocks 
directly, but mineral fabrics (crystallographic preferred 
orientations and shape preferred orientations) have the 
potential to reflect strain and strain history (Lister 1977, 
Simpson & Schmid 1983, Law 1990). and folds provide 
ideal settings in which to study natural variations in 
fabric with strain and strain history, under conditions of 
constant temperature and initial lithology. For many 
years, fabric analysis and the determination of finite 
strain associated with folding have been used to help 
understand folding processes and to assist in recon- 
structing the history of deformation (e.g. Cloos 1947, 
Ramsay 1967, Groshong 1975, Pfiffner 1980, Hudleston 
& Holst 1984, Hudleston & Tabor 1988). An analysis of 
strain development with fold growth in analog or nu- 
merical models allows strain histories at different parts 
of a fold to be tracked. A second objective of this paper 
is to provide a detailed account of strain development in 
buckle folds that may help in the analysis of natural 
fabric variations. 

Our knowledge of the likely form of the constitutive 
relationships appropriate for rock deforming under 
natural conditions comes from laboratory experiments, 
extrapolated with some uncertainty to the much slower 
strain rates occurring in nature (Paterson 1987). Diffu- 
sive deformation mechanisms give rise to linear flow 
laws (e.g. Elliott 1972, Nicolas & Poirier 1976) and creep 
involving dislocation movement, likely to be important 
in much of the ductile part of the crust on the basis of 
much experimental work (e.g. Carter 1976, Kirby & 
Kronenberg 1987), gives rise to a power-law constitutive 
relationship, with values of the power-law exponent 
typically in the range of 2-8. 

We use in this paper a finite element code that incor- 
porates a power-law constitutive relationship of the kind 
appropriate for simulating Newtonian (linear) or power- 
law viscous flow of rocks, and we apply this to study the 
development of strain in symmetrical single-layer buckle 
folds. We are particularly interested in seeing how the 
strain distribution varies as a function of the power-law 
exponent, nL, of the stiff layer and in seeing, for differ- 
ent values of nr and of the ratio of viscosities of layer to 
viscosity of matrix, how the neutral surface develops and 
migrates during fold growth. 

NUMERICAL MODELS 

The finite element code used in this study is based on 
one developed by Hanson (1990) for simulating flow of 
glaciers. We have described the basic application of this 

A 

B 

Fig. 2. (a) Initial finite element grid (one half wavelength) for strain 
analysis. ABCD represents the stiff layer. A small sinusoidal pertur- 
bation (initial amplitude/thickness, A,/h, = 0.1) is imposed on the 
layer before deformation. For boundary conditions, see Lan & 
Hudleston (1991, fig. 1). (b) Deformed configuration from (a) for 
LJh,, = 12, nL = 3, nM = 1 and m = 215, after 40% layer-parallel 

shortening. 

code to problems of folding in earlier papers (Lan & 
Hudleston 1991, Hudleston & Lan 1994). We will simply 
note here that fold growth is studied by solving a series of 
quasi steady-state problems, with time steps sufficiently 
small to allow the exponential growth of the fold to be 
tracked accurately. There is one difference between the 
models described in this paper and the earlier models, 
and that is in the number of elements employed. To 
improve the accuracy and resolution of strain in the stiff 
layer, 160 elements (in one half wavelength, see Fig. 2a) 
are used, rather than 48 as in the earlier models. In the 
text, the subscripts L and M refer to layer and matrix, 
respectively, and the subscript o refers to the initial 
state. ‘Wavelength’ (measured along the fold arc) and 
thickness at any stage during deformation are rep- 
resented by L and h, respectively. The initial thickness 
of the stiff layer parallel to the axial trace is h,, and this is 
also very nearly equal to the initial orthogonal thickness 
throughout the fold (see Fletcher 1979). The thickness, 
h, at any deformational stage is an average orthogonal 
thickness calculated by h = L,,h,IL (given constant 
volume). All folds produced in our models are class IB 
(parallel) or deviate slightly from IB in the field of class 
IC (cf. Hudleston & Lan 1994, figs. 12 and 13). The 
percentage bulk shortening in the direction parallel to 
the layer is termed S. 

As in the previous studies (Lan & Hudleston 1991, 
Hudleston & Lan 1994) the initial perturbations were 
sinusoidal in form, and models were made employing 
two initial geometries (three with initial wavelength/ 
thickness, Lo/h, = 12, initial amplitude/thickness, A,/h, 
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Fig. 3. Part of Fig. 2(b) enlarged with principal strains shown. The 
short orthogonal lines in the center of each element represent the 

magnitudes and orientations of the principal finite strains. 

= 0.1, and three with L,lh, = 20, A,/h, = 0.167). In all 
models, the viscosity ratio &/kM = m = viscosity 
layer/viscosity matrix) for the basic flow was given 
values m,= 10, 215 and 630 for power-law exponent of 
the stiff layer, nL = 1,3 and 10, respectively, for each of 
the two starting configurations. In addition, a set of 
models was run with all parameters fixed (AJh, = 0.1, 
L,lh, = 12, m = 100) except the power-law exponent of 
the layer, which was given the values nL = 1, 3 and 10. 
These combinations of parameters lie in the range of 
what might be expected under natural conditions. 
Further discussion of the choice of parameters is given in 
Hudleston & Lan (1994). 

Fletcher (1974) has shown that the power-law ex- 
ponent of the matrix has a small effect on the buckling 
instability, when the rheological parameters are appro- 
priately expressed, and so to save computational time 
the matrix material was made linear viscous (11~ = 1) in 
all models. 

All calculations were performed on Cray-2 and Cray 
C90 supercomputers. Figures 2(b) and 3 show the ele- 
ment grid in the deformed state and the magnitudes and 
orientations of principal cumulative strain, after 40% 
shortening, for a selected set of rheological parameters. 
To follow a common convention in geological dis- 
cussions of strain, the expression ‘finite strain’ is used in 
this paper to denote the total strain accumulated at any 
stage of the deformation. 

RESULTS 

Effects of layer-parallel shortening 

Buckle folding in viscous materials is accompanied in 
its early stages by layer-parallel shortening, which re- 

sults in a nearly homogeneous strain of the whole sys- 
tem, while the fold amplitudes remain small (limb dips 5 
lCrl5’). The incremental ‘shortening’ strain in the stiff 
layer diminishes in magnitude and becomes hetero- 
geneous as the fold grows. We discuss first the effects of 
such layer-parallel shortening, before we consider the 
strain due to buckle folding. 

A simple way to record the overall shortening of the 
layer is to plot the ratio of arclength to initial arclength, 
L/L,, or (arclength/thickness)/(initial arclength/initial 
thickness), (Llh)l(L,/h,), as a function of bulk shorten- 
ing, S (Fig. 4). Because L = L,d& and h = h,dI, for a 
flat layer, the quantity (Llh)l(L,lh,) is equal to the 
homogeneous strain, d&l-\/;l,, experienced by the 
layer and the whole rock, where A1 and 1, are the 
principal quadratic elongations. As the fold grows, these 
quantities will cease to track the bulk strain. If the layer 
folds without any change in length or thickness, L/L, = 
(Llh)l(L,lh,) = 1. 

We can see from Fig. 4 that layer-parallel shortening 
occurs in all cases, and that the amount of such shorten- 
ing depends strongly on nL and m. The higher the value 
of nL or m, the smaller the amount of shortening. For nL 
= 3 and 10, shortening is modest and occurs mostly 
during the early stages of deformation. The total ‘homo- 
geneous’ shortening experienced by the layer is less than 
3% (v&/b’JI, = (Llh)l(L,lh,) ~0.94) for L,lh, = 20 
and nL = 3 or 10, less than 8% (v&/d& 2 0.85) for 
L,lh, = 12 and nL = 3, and less than 5% (~&I~& 
~0.90) for L,lh, = 12 and nL = 10, as can be seen in 
Figs. 4(a) & (b) (with m = 215 for nL = 3 and m = 630 for 
nL = 10). For m = 100 and L,lh, = 12 (Fig. 4c), the 
shortening is similar for all three values of nL, but 
greatest for nL = 1 and least for nL = 10. Maximum 
shortening is about 12% for nL = 1, and 11% for nL = 3 
and 10. For nL = 1 and m = 10, layer-parallel shortening 
is much more pronounced, and in fact closely tracks the 
curve representing bulk homogeneous strain until a 
shortening, S, of ca. 30%, for both L,lh, = 12 and L,lh, 
= 20 (Figs. 4a & b). The slight increase in (L/h)l(L,lh,) 
at values of shortening above 50% (see Figs. 4a & b) is 
due to elongation of the limbs as they rotate into posi- 
tions of extensional strain. 

Strain history at selected locations around the folds 

It is instructive to consider the development of strain 
at selected locations around folds developed from the 
same initial configuration, differing in the values of nL 
and m. We select three locations, corresponding to 
elements in the outer and inner arcs of the hinge and at 
the middle of the layer at the inflexion point, and 
compare the results for the three models with L,/h, = 
12, nL = 1, 3 and 10, and m = 10, 215 and 630, 
respectively (Fig. 5). In the inner arc of the fold (element 
213), strain is compressive (1, vertical-indicated by 
positive values in the figure) along the layering, through- 
out fold growth, in all three cases (nL = 1,3, lo), strain 
magnitude increasing monotonically with shortening 
(Fig. 5b). The greatest strain attained (by 60% shorten- 
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Fig. 3. Variation of wavelength/thickness (L/h), in terms of initial 
wavelength/thickness (L,lh,), with shortening, S (%). Dashed lines 
show pure shortening (bulk strain)--passive deformation. (a) Form = 
10,215 and 630, and nL = 1,3 and 10, L,ih, = 12. (b) For n = 10,215 
and630, and nL = I,3 and 10, I!,,,&, = 20. (c)Form = 100, &,/ho = 12 

and nL = I,3 and 10. 

ing) is for IEL = 1, although until 30% shortening this 
location records the least strain when nL = 1. In the 
outer arc of the fold (element 9) the situation is compli- 
cated by initial layer-paralle1 shortening, which opposes 
the extensional strain (AI horizontal-indicated by nega- 
tive values in the figure) due to buckling. In this case the 
strains in all three cases are initially compressional, 
becoming extensional at different amounts of bulk 
shortening (S = 4% for ILL = 3 and S = 1% for nL = lo), 
when the buckling strain in the outer arc first exceeds the 

layer-parallel shortening (Fig. 5a). For nL = 1 this never 
happens, and the maximum finite compressive strain 
remains parallel to the layer throughout fold develop- 
ment. We will return later in the paper to details of this 
history when we remove the effects of layer-parallel 
strain and consider the behavior of the neutral surface. 

At the inflexion point (element 104), strains remain 
very small throughout the history of fold growth, for nL 
= 3 and 10, with a maximum elongation perpendicular 
to the layer (Fig. 5~). This small strain is the ‘locked in’ 
early layer-parallel shortening. For nL = 1 there is 
progressive development of strain during fold growth, 
associated with progressive layer shortening and thick- 
ening which is pronounced in this case (see Fig. 4). 

Finite strain v~r~~tio~s along the axial surface truce 
from outer arc to inner arc 

Let us now consider how the strain varies along the 
axial trace, from outer arc to inner arc, at some fixed 
value of bulk shortening. This is the kind of data that 
might be obtained from natural folds. We represent the 
data in various ways. First, in Fig. 6(a) we plot the axial 
ratio of the finite strain (viA,/v&) as a function of 
distance along the axial surface trace for the three 
models with the same initial geometry (L,lh, = 12) and 
same bulk shortening S = 40%, and with yf~ = 10, 215 
and 630 for nL = 1,3 and 10, respectively. Note that the 
strain ratios in both inner and outer arcs for nL = 10 are 
greater than those in equivalent positions for HL = 3 
(Fig. 6a), the two folds being otherwise of very similar 
amplitude and maximum limb dip. By plotting 
(V’,?,lv&) as the ordinate in Fig. 6(a) we obscure the 
fact that layer-parallel strains in the outer arc for EL = 3 
and 10 are extensional and contractional in the inner arc, 
but emphasize the difference in strain magnitude be- 
tween inner and outer arcs. The diminishing strain 
magnitude towards the center of the layer from both 
margins, however, indicates the approach to the neutral 
surface, which separates extensional from contractional 
strains. A discussion of strain gradients is more easily 
done if we plot the natural logarithm of the strain ratio 
against distance along the axial trace and record outer 
arc strains as positive (R = Vl,/V&; In R = 
In vA,--ln V’&) and inner arc strains as negative (R = 
~/&/t/a,; In R = In d&--In t’A1). This is done in Fig. 
6(b), in which the position of the neutral surface is clear 
for nL = 3 and 10. It is apparent in both Figs. 6(a) & (b) 
that there is no neutral surface for the case nL = 1, and 
strains increase monotonically from outer arc to inner 
arc. This is because the buckling strains are super- 
imposed on the early layer-parallel shortening, which is 
greater in magnitude than the largest extensional com- 
ponent of strain in the outer arc due to buckling. 

It is clear in Fig. 6(b) that the gradient in strain along 
the axial trace increases from outer arc to inner arc in all 
three cases and is greatest for IZ~ = 10 and least for nL = 
1. These models, however, differ in their values of m, 
and we wish to consider the effect of varying nL alone. In 
Fig. 7(a) we plot results for three models with the same 
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Fig. 5. Variation of strain (R = V//1,/~1~) as a function of shortening, S, at selected locations in the folded layer for three 
models with different values of power-law exponent, nL, of the stiff layer. Geometric and rheologic parameters are the same 
as those in Figs. 2 and 4. For i, normal to the layer, strains are given as positive; for 1, parallel to the layer, strains are given 
as negative. (a) Outer arc at the fold hinge (element 9). Dashed lines represent the strain ratio, R = 1.0. (b) Inner arc at the 

fold hinge (element 213). (c) Limb in the middle of the layer (element 104). The inset shows the clement locations. 

value of viscosity ratio (m = 100) and nL = 1, 3 and 10. 
We note the same dependence of strain gradient on nL as 
is apparent in Fig. 6(b): the larger the value of nL, the 
higher the gradient. We also note that, in this case, there 
now exists a neutral surface for nL = 1. In general our 
results show that for a given Lo/h, and fold amplitude, 
strain gradient along the axial trace depends more 
strongly on nL than on m. This is consistent with our 
earlier findings on fold shape (Hudleston & Lan 1994). 

All the strain profiles along the axial trace considered 
so far have used a Lagrangian frame of reference, with 
positions of elements referred to the undeformed grid, 
as in Fig. 2(a). An Eulerian frame of reference, with 
positions of elements referred to the deformed grid, as in 
Fig. 2(b), is more practical in studies of natural folds, 
and the data of Fig. 7(a) are presented in such a refer- 
ence frame in Fig. 7(b). The strain profiles in all three 
cases are less non-linear (i.e. there is less variation in the 
derivative of the functions in Fig. 7) in the Eulerian 
representation. It is also apparent in Fig. 7(b) that the 
gradient is close to being linear in the outer part of the 
fold for nL = 1, as predicted in the simple models of 
beam buckling or bending, and is more markedly non- 
linear for nL = 3 and 10. 

It is interesting to note that the strain curves for the 
three models intersect almost at the same point, which 

lies at the center of the layer in the undeformed grid and 
at the neutral surface in the deformed grid. 

Removal of uniform shortening 

The amount of layer-parallel shortening depends on 
the initial flatness of the layer as well as on viscosity ratio 
and the power-law exponent of the stiff layer. It is 
useful, therefore, to remove the shortening so that the 
strain due to buckling alone can be compared. It is 
actually not necessary to remove shortening to compare 
strain gradients, as was done in the previous section, 
because addition or removal of a uniform strain on Fig. 
6(b) simply moves the plot vertically up or down. If 
strain due to buckling at any position, d, along the axial 
trace is B = v,%,/d& = f(d), addition of a uniform 
strain, T, prior to buckling gives as the total strain R = 
BT,orlnR=lnB+lnT. 

One simple and approximate way to remove the 
effects of layer-parallel shortening is to assume that the 
finite neutral surface (FNS) due to buckling is located at 
the instantaneous middle of the layer throughout defor- 
mation (i.e. it is a non-material surface). Hudleston & 
Tabor (1988) showed this would be the case if strain 
accumulated plastically and work done in folding the 
layer was minimized. The axial ratio (7’) of maximum to 
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Fig. 6. Strain variation across the stiff layer in the fold hinge from 
outer arc to inner arc, with reference to the unstrained state. (a) Finite 
strain ratio, R = (1 + e,)/(l + e2), and (b) natural logarithm of finite 
strain ratio, R = (1 + et)l(l + e2) or (1 + P?)/( 1 + e, ), plotted against 
distance along the axial trace for LJh, = 12. m = 10,215 and 630, and 
nL = 1, 3 and 10, after 40% shortening. Maximum limb dip shown for 
each model in (a). (1 + e,) and (1 + e?) are the maximum and 
minimum principal stretches. Dashed lines represent the linear model 

with nL = 1. 

minimum principal stretches of the homogeneous strain 
is then found in the following way. The strain ratio, T,, 
at the center of the layer along the axial surface trace at 
any stage is found by interpolation of the numerical 
results. Assuming that the FNS lies at the center of the 
layer, the strain ratio due to buckle folding alone at this 
position must be unity. The interpolated value of T, is 
thus equal to the layer-parallel shortening. The strain 
ratio R = V’~,/V’& at each point along the axial surface 
trace is the multiplied or divided by T, according to 
whether the total layer-parallel strains are extensional or 
contractional. This gives the strains due to buckling. The 
curves in plots of the types shown in Figs. 6(b) or 
7(a),(b) are then shifted up by an amount equal to In T,. 

The argument that the neutral surface should lie at the 
middle of the layer does not hold for non-linear 
materials, because work done is no longer proportional 
to strain intensity (Hudleston & Tabor 1988). In this 
case, a more accurate method of removing the effects of 
layer-parallel shortening is to use the overall change in 
arclength and thickness during deformation and fold 
growth. We measure arclength from hinge to hinge 
along either bounding surface of the stiff layer at each 
stage of fold development. Average thickness at each 
stage can then be found from the condition that area is 

constant. The average axial ratio of the layer-parallel 
shortening strain is then given by T, = (h/h,)l(LIL,) or 
(UT,) = (Llh)l(L,lh,). This is, in fact, what was plotted 
in Fig. 4, which displays the variation of average layer- 
parallel shortening strain, T,, with bulk shortening, S. 
T, at any stage is the strain at the FNS (for buckling 
alone). Values of strain along the axial surface can be 
corrected for layer-parallel shortening in the same way 
as for the first method. In the second method, however, 
the position of the FNS is not prejudged. As we will see 
later, the two methods do not in general give the same 
results. 

Strain ratios along the axial surface trace of the folds 
for both linear and non-linear materials for the cases 
shown in Fig. 6(b), after removing the effect of uniform 
shortening, using the second method just described, are 
plotted in Fig. 8. The plots for nL = 3 and 10 do not 
change much in position, but that for nL = 1 changes 
substantially. We may see clearly from Fig. 8 that the 
value of the axial ratio of the strain due to buckling at 
equivalent positions along the axial surface trace of the 
fold, from outer arc to inner arc, increases as the power- 
law exponent, nL, increases. This is consistent with the 
data for constant m (Fig. 7), in which the correction for 
removal of the uniform shortening is not necessary, 
because it is almost the same for all three cases (see Fig. 
4~): thus all three curves in Fig. 7(a) or (b) would be 
shifted by about the same amount (T, = 1.26 - 1.30). 

We can also see from Fig. 8 that in any given fold the 
finite strain due to (buckling only) extension in the outer 
arc is always less than the finite strain due to (buckling 
only) contraction in the inner arc. Comparing Fig. 8 with 
Fig. 6(b), we can see the effect of removing the shorten- 
ing strain-the plot just vertically moves up-mentioned 
above. With layer-parallel shortening removed, a finite 
neutral surface, of course, exists in all cases. It is clear 
that the position of the finite neutral surface on this plot 
shifts to the right along the horizontal axis, from the 
outer arc towards inner arc (compare Figs. 6b and S), 
when layer-parallel shortening is removed. 

The behavior of the infinitesimal neutral surface (INS) 
andfinite neutral surface (FNS) during fold growth 

We noted above that, at 40% bulk shortening in 
models developed from the same initial configuration 
but with different rheological properties, a finite neutral 
surface (FNS) exists in folds for nL = 3 and 10 (and form 
= 215 and 630, respectively), but not in the fold for 
nL = 1 (and for m = 10) (Fig. 6). This difference in 
behavior is due to differences in the amount of layer- 
parallel shortening experienced in the three models. The 
strains due to buckling are superimposed on those due to 
layer-parallel shortening, the amount of which increases 
as viscosity ratio, m, power-law exponent, nL, and initial 
amplitude, A,, decrease. The effect of this superposi- 
tion can best be described by reference to the neutral 
surface, and in this section we explore further the 
development of the neutral surface during fold growth. 

First, it should be clear that there will in general exist 
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Fig. 8. The same data as in Fig. 6(b) after layer-parallel shortening 
has been removed. 

two neutral surfaces: one in the strain-rate field, the 
infinitesimal neutral surface (INS), as well as the one in 
the strain field, the finite neutral surface, at any stage of 
fold growth (see Ramsay & Huber 1987, pp. 459-461). 
The position of the two will generally not coincide. 

At very low fold amplitudes, during early stages of 
fold growth, deformation is dominatedby layer-parallel 
shortening (see Fig. 4). The stretch parallel to layering 
due to buckling, as approximated by the tangential- 
longitudinal strain model, is a linear function of distance 
from the neutral surface and curvature of the neutral 
surface (Ramsay 1967, pp. 397-400). It involves stretch- 
ing in the outer arc and contraction in the inner arc, and 
it will increase in magnitude as the fold grows and the 
curvature increases. The extensional stretch due to buc- 
kling is greatest at the outer arc of the stiff layer in the 
fold hinge, and if the stretching rate at this point grows to 
become equal to the rate of layer-parallel shortening, 
the outer-arc hinge point becomes one of zero strain 
rate-it is an infinitesimal neutral point (Brun 1983). As 
the fold continues to grow, the rate of stretching in the 
outer arc of the fold exceeds the rate of layer-parallel 
shortening and an infinitesimal neutral surface moves 
down (for anticlines) or up (for synclines) into the layer. 
Eventually, the buckling-related finite extension at the 
outer arc in the fold hinge may come to counteract 
exactly the total layer-parallel shortening, resulting in 
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zero finite stretch. A ‘finite neutral point’ will then 
appear. The finite neutral surface will then move into the 
layer with continued fold growth. There is thus a shift in 
position of both neutral surfaces during fold defor- 
mation, moving away from the outer arcs into the layer. 
In sympathy with the movement of the INS and FNS into 
the layer, there are zones of extensional strain rate and 
finite extension that move in the opposite direction into 
the matrix away from the hinges. There is no neutral 
surface in this case, however, because of the layer- 
parallel shear strains: instead there are an infinitesimal 
neutral point and finite neutral point lying in each fold 
axial surface (see Ramsay & Huber 1987, fig. 21.22). 

We have traced the migration of the INS and FNS in 
the hinges of the folds in the stiff layers of our models for 
both linear and non-linear cases. The position of the 
neutral surfaces are found at successive stages of fold 
growth by interpolation of the strain rate and finite strain 
values along the axial surface trace of the stiff layer. The 
results are shown in Fig. 9, and it should be emphasized 
that the positions of the grid points in each plot of this 
figure are those in the undeformed state. As anticipated 
from the discussion above, in all three models (Figs. 9a- 
c) the INS first appears in the outer arc of the stiff layer, 
and moves gradually across the layer towards the inner 
arc. In the two non-linear cases (Figs. 9b & c), the INS 
appears at an early stage of deformation, and crosses the 
middle of the layer at about 20% bulk shortening for izL 
= 3 and 15% bulk shortening for nL = 10. In these two 
cases, the finite neutral surface also first appears early in 
the experiments and moves down into the layer follow- 
ing the INS. The FNS just about reaches the middle of 
the layer, again in both cases, at a bulk shortening of 
60%. It is also apparent from Fig. 9 that the distance 
between the INS and the FNS increases as nL and S (%) 
increase. 

The data shown in Fig. 9 are also plotted in Fig. 10, in 
which the distance across the layer are now given with 
reference to the deformed state. Note that in the two 
non-linear cases (Figs. lob & c) the INS now reaches the 
middle of the layer later in the deformation history and 
the FNS does not reach the middle of the layer. 

The situation for the linear model is very different 
from that for either of the non-linear models (Figs. 9a 
and 10a). Although the INS moves from the outer edge 
of the layer towards the center, it does not come into 
existence until the bulk shortening, S, is 30-35%. 
Another important difference is that having moved 
steadily into the layer until about 50% bulk shortening, 
it abruptly shifts direction and begins to move back 
towards the outer edge. Note that the FNS never comes 
into existence: the extensional strain due to buckling 
does not exceed the large contractional strain due to 
layer-parallel shortening. This is consistent with the 
earlier discussion of the strain history of individual 
nodes (Figs. 5 and 6). 

The behavior of the INS in the linear case (Figs. 9a 
and 10a) can be understood qualitatively in terms of the 
contribution of buckling to deformation at different 
stages of fold growth. In the first part of the fold history, 
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Fig. 9. Tracking of the finite neutral surface (FNS) and infinitesimal 
neutral surface (INS) along the axial trace as layer-parallel shortening, 
S, increases. with respect to the undeformed state. For LJho = 12 and 
,4,/h, = 0.1. (a) nL = 1 and m = 10 (no FNS can be defined); (b) rz~ = 3 

and M = 21.5; (c) nL = 10 and M = 630. 

already discussed, layer-parallel shortening exceeds the 
extensional strains due to buckling until a shortening of 
about 30%. Buckling is most efficient at intermediate 
limb dips, reflected by the movement of the INS into the 
layer. When folds attain high limb dips or become tight, 
further buckling is resisted by the matrix material be- 
tween the limbs of the folds, which must be extruded to 
allow further fold growth (Chapple 1968). Thus a grow- 
ing proportion of the deformation is taken up by ‘flatten- 
ing’ of the folds, a late stage of deformation that is rather 
uniform. This occurs in our model at S >50% (Figs. 9a 
and 10a). The return to a relatively more uniform strain- 
rate field causes the INS to move back towards the outer 
arc of the fold (Figs. 9a and lOa). (If it were truly 
uniform, of course, the INS would cease to exist.) 

We find that the behavior of the INS and FNS largely 
depend on the strength of the buckling instability, which 
depends in turn on both viscosity ratio, m, and on 
power-law exponent, nL. Let us consider two cases 
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Fig. 10. The same as Fig. 9, plotted with the frame of reference being 
the deformed state. 

intermediate between the range of instabilities rep- 
resented in Figs. 9 and 10. In a linear case, with nL = 1 
and m = 100, the instability, being stronger than for 
nz = 10, results in the INS appearing much earlier in the 
deformation history (at about S = 5%) and, unlike the 
situation for m = 10, the FNS exists and appears fairly 
early in the deformation history (Fig. ll-solid lines, see 
also Fig. 9). The late stage effect of the INS and FNS 
beginning to move back towards the outer arc is seen for 
rrr = 100 (Fig. 1 l-solid lines), as for M = 10, but is not as 
pronounced. In a non-linear case of roughly comparable 
instability, with IZ~ = 3 and m = 43 (Fig. II-dashed 
lines), the development of the INS and FNS is in fact 
quite similar, except that there is no late-stage shift of 
the neutral surfaces back towards the outer arc. 

The results of tracking the infinitesimal and finite 
neutral surfaces in all the various models are summar- 
ized in Fig. 12. The INS in buckle folds developed in 
both non-linear and linear materials first appears in the 
hinge at the outer edge of the stiff layer, and it moves 
well down across the layer as bulk shortening increases 

(Fig. 12a), except when the instability is very weak 
(n, = 1, m = 10). The FNS (Fig. 12b) follows the INS 
into the layer, except when the instability is so weak (nr- 
= 1, m = 10) that it never comes into existence. It always 
lies above the INS. 

DISCUSSION 

The pattern of finite strain in our numerically simu- 
lated buckle folds is very close to the theoretical one of 
tangential longitudinal strain, with layer-parallel exten- 
sion in the outer arc and contraction in the inner arc (Fig. 
3), with the additional effect of an early uniform layer- 
parallel shortening. This is consistent with earlier nu- 
merical models of folding (Dieterich & Carter 1969, 
Dieterich 1970, Shimamoto & Hara 1976), experiments 
on folding (Ramberg 1962, 1963b, 1964, Hudleston 
1973) and studies on natural folds (Groshong 1975, 
Hudleston & Holst 1984, Hudleston & Tabor 1988). 
Field evidence of significantfinite extension in the outer 
arcs of natural folds is limited, suggesting that layer- 
parallel shortening is important in nature. An illus- 
tration of the relatively unusual occurrence of finite 
stretching in the outer arcs of folds is provided by 
Roberts (1971), who observed what he referred to as an 
‘abnormal’ cleavage pattern in pelitic layers that implied 
the existence of a finite neutral surface in the folds in 
adjacent psammitic layers. In about a dozen folds in 
psammitic layers in pelitic schists studied by Hara et al. 
(1968), about half showed evidence of a finite neutral 
surface on the basis of the shapes of the quartz grains. 
Although evidence of finite stretching in outer arcs of 
fold hinges is not that common, evidence of incremental 
extension, in the form of extensional veins (e.g. Srivas- 
tava & Hudleston 1991) or in crystallographic fabric 
development (Hudleston & Tabor 1988) is widespread. 

Our tracking of the INS and FNS during folding 
indicates that strain history in a buckle fold is not as 
straight-forward as continuous extension in the outer arc 
and continuous shortening in the inner arc. We have 
seen that at any stage of folding there is an INS situated 
on the inside of the FNS. Thus the stiff layer can be 
divided into three zones with different, nearly coaxial 
strain histories at a fixed shortening (Fig. 13). The outer 
zone (III) has suffered initial contraction and sub- 
sequent finite elongation. Between the FNS and INS 
(zone 11) the layer has suffered finite shortening, yet the 
last part of the history is extensional. Below the INS the 
layer has undergone continuous shortening. In some 
cases, where layer-parallel shortening has been large, 
zone III does not exist and only finite shortening strains 
are preserved. The division of the layer into zones with 
different strain histories is implicit in the results of other 
finite element models of folding (see Dieterich 1969, 
figs. 2 and 3, Dieterich & Carter 1969, fig. 10, Parrish 
1973, fig. 5). 

It is interesting to see how the position of the FNS 
compares with what can be predicted theoretically. 
Hudleston & Tabor (1988) showed that the position of 
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the neutral surface that minimizes the work done in shortening (T,,,) imposed before significant buckling has 
distorting the layer (assuming that work done is pro- occurred. The layer-parallel strain can be found inde- 
portional to strain intensity) is at the center of the layer pendently as discussed in an earlier section, and the 
in the deformed state (Hudleston & Tabor 1988, fig. 6). error involved in assuming that the strain at the center of 
This implies that material lines that were progressively the stiff layer at 40% shortening form = 100, and nL = 1, 
further from the center of the layer towards the inner arc 3 and 10 is equal to the layer-parallel shortening is given 
become the neutral surface as a fold grows and as the in Table 1. Our numerical results are closely consistent 
radius of curvature is decreased. If the theory is correct, with the theoretical prediction for nL = 1 (see Fig. 7b), 
the strain at the mid-point of the layer due to buckling but deviate significantly from this prediction for nL = 3 
alone should be zero (R = l), and thus the strain and 10. This is to be expected because, for non-linear 
recorded there, R,, should be equal to the layer-parallel materials, work done is no longer proportional to strain 
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Fig. 13. Schematic diagram to show three zones with different strain 
histories defined by positions of the infinitesimal neutral surface and 
finite neutral surface at any instant of folding. Total strains are 
represented by the shaded ellipses, with the maximum stretch direc- 
tions shown by the dashed white lines; infinitesimal strains are rep- 
resented by the solid-line ellipses, with directions of maximum strain 

rate shown by solid lines. 

intensity, because of the strain rate-softening of the flow 
law. If strain at the center of the stiff layer were used to 
estimate the bulk strain undergone by the rocks, this 
would result in an overestimation of 10% for ~1~ = 3 and 
of 25% for nL = 10. 

The strain history of shortening followed by 
elongation in the stiff layer, of course, is imposed on the 
material elements of the rocks, and must be accommo- 
dated in some way. It might be recorded in many 
naturally deformed rocks by superimposed small scale 
structures which apparently ‘contradict’ each other in 
the sense that maximum shortening implied by one 
structure is perpendicular to the maximum shortening 
implied by another (Ramsay & Huber 1987, pp. 459- 
462). Likely evidence of extensional and contractional 
strains in low-grade rocks is vein-filled fractures and 
pressure solution films, respectively. Neither of these 
can be simply reversed and removed once formed should 
the principal deviatoric stresses change. As noted by 
Ramsay (1967, pp. 114-120), a single tectonic event 
might result in a complex deformation process with 
progressively changing geometric constraints, giving the 
appearance of separate events. 

For deformation at higher metamorphic grades, incre- 
ments of earlier contraction followed by extension may 
be more difficult to see: crystallographic fabrics resulting 
from crystal-plastic deformation mechanisms might par- 
tially or wholly overprint earlier fabrics (e.g. Lister 
1977). 

A key question of this project was what differences in 
internal strain pattern can be attributed to differences in 

Table 1. Comparison between theoretical and 
observed strains at the mid-point of the stiff layer 
along the fold axial-surface trace. for three models 
with m = 100. R, is the total strain recorded at 
the center of the layer in the models. T is the true 
layer-parallel ‘shortening’ strain calculated from 
the change in length of the layer (i.c. the true 
‘shortening’ strain experienced bythe system prior to 
buckling). E is the error, as a percentage, in taking 

R, to be the layer-parallel shortening strain 

k 1 3 IO 

43 1.30 1.40 1.67 
T 1.31 1.27 1.25 
E% 1 10 25 

the power-law exponent, nL? We noted that the strain 
gradient along the axial trace was more linear for nL = 1 
than for izL = 3 and 10 (Figs. 6b, 7b and 8). This is what 
we would expect from simple beam theory. In simple 
(thin plate and low-amplitude) buckling, the layer- 
parallel normal stress varies linearly across the layer and 
is directly related to curvature (Beer & Johnston 1981). 
If stress is linearly related to strain rate, a similar 
distribution of strain will exist in a Newtonian material 
(some deviation from linearity is to be expected as beam 
thickness and fold amplitude are increased). If the 
material is of power-law type (with nL > l), the strain 
rate and strain will increase more rapidly away from the 
neutral surface on both sides than they will in a linear 
material. Thus the finite strain gradient will be greater 
for non-linear than for linear materials for a given 
curvature of the layer. A similar difference between 
Newtonian and non-Newtonian materials in the gradient 
of shear strain away from an interface between the two 
types of material was noted in simple-shear experiments 
carried out by Treagus & Sokoutis (1992). 

Our numerical results show that the finite strain gradi- 
ent changes systematically with an increase of nL (Fig. 
7). It can be seen from Fig. 7(b) that the strain gradient 
along the axial trace for models of similar L/h, limb dip 
and amplitude is greatest for nL = 10 and least for 
nL = 1. There is a shape difference (Hudleston & Lan 
1994) that can be related to this difference in strain 
gradient-as nL is increased, the folds become more 
straight-limbed and sharper hinged, and the gradient of 
strain along the axial trace is increased. Both strain 
gradient and shape effects are due to the phenomenon of 
strain-rate ‘softening’ in the hinge as nL is increased. In 
the non-linear stiff layers in our models strain is concen- 
trated in the fold hinges and is associated with modest 
early hinge thickening. Strain gradient is a feature that 
could be established in natural folds, and the gradient 
compared with the gradients in numerical models of 
folds of similar L/h, limb dip and amplitude. 

Although only in models with nL = 1 did we find the 
situation in which no FNS developed, it should be 
pointed out that one cannot consider the lack of a 
neutral surface in natural folds to be indicative of a linear 
flow law, because other rheological conditions, such as 
strain softening or very low viscosity ratio in non-linear 
flow can produce a similar effect. 

By the same token, we cannot conclude that the 
presence of a FNS indicates non-linear flow. In the 
linear model with a high viscosity ratio (m = 100) and in 
the non-linear model (~1~ = 3) with a low viscosity ratio 
(m = 43), both INS and FNS were defined (Fig. 11). For 
the linear models, a tendency for a later stage compres- 
sion (with the INS moving back towards the outer arc) 
exists whatever the viscosity ratio (10 5 m % 100 in this 
study) (Figs. 9a, 10a and 11). 

An interesting thing to note in Fig. 12 is that the INS in 
all models (except for IZ L = 1, m = 10) converge to a 
similar position in the layer (distance = 0.21, see Fig. 
12a) at high values of overall shortening. Likewise, the 
FNS in all models converge to a position (at about 
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distance = 0.5, see Fig. 12b) in the middle of the layer. 
This suggests that the INS and FNS do not move too 
much as folding reaches the ‘flattening stage’ (i.e. S 2 
50%). This further suggests that the biggest distinction 
between folds developed under different conditions of 
nL may be made when the folds are of modest amplitude. 
This is consistent with the results of our earlier study on 
fold shape (Hudleston & Lan 1990, 1993). 

Finally, it is important to note that the deformation in 
the hinge region of buckle folds formed under conditions 
of bulk steady-state coaxial flow is not steady state, but is 
non-linear quasi-coaxial flow, with exchange in principal 
directions of strain rate and strain possible in the outer 
arc of the stiff layer (zones II and III in Fig. 13). Even the 
simplest conditions of bulk strain may give rise to quite 
complex local effects. 
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